Residual Arnoldi Methods : Theory ,
نویسنده
چکیده
Title of dissertation: Residual Arnoldi Methods : Theory, Package, and Experiments Che-Rung Lee, Doctor of Philosophy, 2007 Dissertation directed by: Professor G.W. Stewart Department of Computer Science This thesis is concerned with the solution of large-scale eigenvalue problems. Although there are good algorithms for solving small dense eigenvalue problems, the large-scale eigenproblem has many open issues. The major difficulty faced by existing algorithms is the tradeoff of precision and time, especially when one is looking for interior or clustered eigenvalues. In this thesis, we present a new method called the residual Arnoldi method. This method has the desirable property that certain intermediate results can be computed in low precision without effecting the final accuracy of the solution. Thus we can reduce the computational cost without sacrificing accuracy. This thesis is divided into three parts. In the first, we develop the theoretical background of the residual Arnoldi method. In the second part, we describe RAPACK, a numerical package implementing the residual Arnoldi method. In the last part, numerical experiments illustrate the use of the package and show the practicality of the method. Residual Arnoldi Methods : Theory, Package, and Experiments
منابع مشابه
Krylov Methods for Nonlinear Eigenvalue Problems
We present two generalisations of the Krylov subspace method, Arnoldi for the purpose of applying them to nite dimensional eigenvalue problems nonlinear in the eigenvalue parameter. The rst method is called nonlinear rational Krylov subspace and approximates and updates the projection of a linearised problem by nesting a one-sided secant method with Arnoldi. The second method, called nonlinear ...
متن کاملSimple Square Smoothing Regularization Operators
Tikhonov regularization of linear discrete ill-posed problems often is applied with a finite difference regularization operator that approximates a low-order derivative. These operators generally are represented by banded rectangular matrices with fewer rows than columns. They therefore cannot be applied in iterative methods that are based on the Arnoldi process, which requires the regularizati...
متن کاملOn adaptively accelerated Arnoldi method for computing PageRank
A generalized refined Arnoldi method based on the weighted inner product is presented for computing PageRank. The properties of the generalized refined Arnoldi method were studied. To speed up the convergence performance for computing PageRank, we propose to change the weights adaptively where the weights are calculated based on the current residual corresponding to the approximate PageRank vec...
متن کاملLocking and Restarting Quadratic Eigenvalue Solvers
This paper studies the solution of quadratic eigenvalue problems by the quadratic residual iteration method. The focus is on applications arising from nite-element simulations in acoustics. One approach is the shift-invert Arnoldi method applied to the linearized problem. When more than one eigenvalue is wanted, it is advisable to use locking or de-ation of converged eigenvectors (or Schur vect...
متن کاملAnalysis of Some Vector Extrapolation Methods for Solving Systems of Linear Equations
In this paper, we consider some vector extrapolation methods for solving nonsymmetric systems of linear equations. When applied to sequences generated linearly, these methods namely the minimal polynomial extrapolation (MPE) and the reduced rank extrapolation (RRE), are Krylov subspaces methods and are respectively equivalent to the method of Arnoldi and to the GCR and GMRES. By considering the...
متن کامل